

noiseAl

Automated Analysis of Sound

Matthew Pettersson

noiseAl Products

If a human can hear an event noiseAl can see it in the data

Noise.ai WP (2).SVL_27_01_2023 8_15_55_27600_28200 is selected!

wood

😔 Back

Machine learning extracts essential features

"Machine learning is the science of getting computers to imitate the way humans learn"

noiseAl/community

Reduce noise management effort Avoid unnecessary production deferral Protect social licence to operate

A presentation by Wood.

noiseAI helps operators who want to manage noise proactively

Increasing threat to social license to operate

1 Passive	2 Reactive	3 Defensive	4 Proactive
"Noise sensitive receivers are too far away for us to impact"	<i>"We can undertake an investigation if required"</i>	"We meet our obligations by monitoring and reporting on noise levels"	"We identify issues and take action"
 Monitoring not used 	 Temporary monitoring 	 Permanent or scheduled monitoring or Noise model validated by measurement 	 Action on noise level alerts and/or complaints Noise level prediction

Noise Monitoring Challenges

Analysis of incoming noise data in near real time

- noiseAl filters out extraneous noise.
- Remaining data (in orange) indicates mine noise
- Includes frequency filtering for insect noise

— noiseAl filtered noise level L_{eq,0.5s}

---- Assessed noise level, L_{eq,15m}

What noiseAl/community tells the operator

WHEN THE INDUSTRIAL NOISE OF INTEREST IS **NOT DETECTABLE** WHEN THE INDUSTRIAL NOISE IS DETECTABLE AND **ABOVE THE LIMIT**

WHEN THE INDUSTRIAL NOISE IS DETECTABLE BUT **BELOW THE LIMIT**

wood.

noiseAl replaces a manual and inconsistent process with a low touch system...

...enabling operators to focus on safety and production

wood.

noiseAl solution overview

- Advisory and technical support by subject matter experts
- Responsive support underpinned by service level agreement

* Wood provides ECU (Edge Computing Unit) to enable connectivity

A regulator's perspective

- Noise monitors must meet applicable standards
- noiseAI ML technology is an enhancement of conventional screening techniques
- Immediate assessment enables better outcomes for the community

"We support use of best available technologies"

noiseAl/fauna

Enable timely action Reduce monitoring effort

Protect social licence to operate

Solution Overview

- Solution required for monitoring bat activity to:
 - Provide data in a more-timely manner which enables management action
 - Reduce cost and safety issues associated with field work
- Challenges:
 - Large data
 - High precision required
 - Limited network bandwidth
 - Remote and hostile environment

Model Objectives

- Objective is to accurately identify PLN/Ghost bat calls
- Prioritise *precision* over *recall*, although achieving high performance on both are important

PLN bat detection

- High precision ensures low false positives
- High recall ensures few calls are missed

Ultrasonic model Ultrasonic	98.7%	96.1%
frequency analysis	precision	recall

Ghost bat Social Calls

Chirp Trill

Squabble

USV (Ultrasonic Social Vocalisation)

wood

Ghost bat detection

- Ghost bat detected if either model returns positive result
- High precision on both models ensures low false positives
- Lower recall in each model due to cross over
- Models compensate for each other to reduce false negatives

Ultrasonic model	99.4%	92.7%
frequency analysis	precision	recall

analysis precision recail	Social call model High frequency analysis	99.6% precision	97.2% recall
---------------------------	--	------------------------	-----------------

19

Solution Overview

Hardware

• Portable and adaptable to suit various situations

noiseAl/workplace

Quantify exposure contributions Prioritise noise controls Demonstrate benefits

How to identify which sources should be controlled?

Comparison of Methods

Dosimetry

Exposure Estimations

Noise hazard	Measured	Duration of	Partial
	noise level,	exposure, T _i	exposure,
	L _{Aeq,Ti}	h	E _{A,Ti}
	dB(A)		Pa²h
Planer	102	0.5	3.17
Circular saw	98	4.0	10.1
Hammering	92	2.0	1.27
Power drill	89	2.5	0.79

Dosimetry + noiseAl

Accuracy
Immediate results
Standardised
Identification of sources
Prioritisation for control

Identification of sources
Prioritisation for control
What-if investigation
Less repeatable
Takes time
Requires experience

Derived from dosimetry
Accuracy
Immediate results
Identification of sources
Prioritisation for control
What-if investigation
wood

noiseAI classifies the dosimetry time history

noiseAI determines exposure contributions

Exposure Contribution Summary

- Box size: Exposure contribution
- Box value: Average source level (dB(A))

26

The Process

Label noise sources from select samples

Upload dosimetry files to web-app

28 resentation by Wood.