Replacing Fossil Coal with Biocoal Via High Temperature Pyrolysis

A&WMA Decarbonization Conference Sept 13, 2023

CHAR technologies

FORWARD LOOKING STATEMENTS

Statements in this presentation, to the extent not based on historical events, constitute forward-looking statements. Forward-looking statements include, without limitation, statements evaluating market and general economic conditions, and statements regarding future-oriented costs and expenditures. Investors are cautioned not to place undue reliance on these forward-looking statements, which reflect management's analysis only as of the date thereof. These forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially. Such risks and uncertainties with respect to the company include the effects of general economic conditions, actions by government authorities, uncertainties associated with legal proceedings and negotiations, competitive pricing pressures and mis-judgements in the course of preparing forward-looking statements.

What is "HTP"? Thermochemical Conversion 101

Attributes	Combustion	Gasification	High Temperature Pyrolysis (HTP)
Amount of Oxygen	Oxygen rich	Oxygen limited	Oxygen free
Source of Heat	Direct Burning of the biomass	Direct Limited burning of biomass/syngas in reactor	Indirect Burning of syngas outside of reactor

Thermochemical Conversion For GHG Reduction 101

HIGH TEMPERATURE PYROLYSIS (HTP) TECHNOLOGY

*After initial start-up, CHAR HTP is powered by a slip stream of the renewable energy it produces to externally heat the biomass to cause a thermochemical conversion. No incineration possible.

CHAR's Thorold RNG & Biocoal Facility

2 modules would...

- Replace 25% of Canada's largest steel mill's coal
- RNG for 5,500 homes

CHAR's 50,000 sq feet Thorold facility

- Supply chain accessible by water, rail and highway
- Feedstock provided locally by Walker Environmental

WHAT DO WE MAKE? ALWAYS A GAS & A BIOCARBON

CHAR's HTP co-produces green hydrogen or RNG supporting the Green Energy Transition

OR

additional upgrading.

RENEWABLE NATURAL GAS

CHAR technologies

SYNGAS TO RENEWABLE NATURAL GAS PROCESS

SYNGAS CHARACTERISTICS

METHANATION CHEMISTRY

Water Gas Shift

$CO + H_2O <-> H_2 + CO_2$

Methanation

 $CO_2 + 4H_2 <-> CH_4 + 2H_2O$

SYNGAS TO RENEWABLE NATURAL GAS PROCESS

CHAR has TWO Biocarbon Markets

Biocoal to Replace Fossil Coal

- Developed in collaboration with Canadian steel makers
- Direct drop-in replacement for fossil coal
- Provides a 91% greenhouse gas (GHG) reduction vs. fossil coal
- Steelmaking accounts for 8% of global GHG emissions

Biochar for Carbon Sequestration

- Monetize biochar through carbon sequestration soil remediation CO₂ Removal Certificates (CORCs)
- CORCs are generated through biochar sales & sequestration

Other Biocarbon Markets...

Strategic Place in Steel Decarbonization

Biocoal

Quick Facts:

- 1 tonne coal = 2.9 tonnes GHG (direct consumption only)
- 1 tonne biocoal replaces 1.1 tonnes coal
- 1 tonne biocoal = 0.27 tonnes GHG (lifecycle)
- GHG Pricing = \$170/tonne by 2030
- In 2030, 1 tonne of coal will cost an extra \$496

CleanFyre v.s. Anthracite Coal:

Fuel	Energy Value	GHG Emissions
CleanFyre	32 MJ/kg (13 000 BTU/lb)	0.27 tonnes of CO ₂ /tonne
Anthracite coal ¹	29 MJ/kg (12 000 BTU/lb)	2.9 tonnes of CO ₂ /tonne

• 1 tonne of CleanFyre replaces 1.1 tonnes of Anthracite, reducing net GHG emissions by 2.90 tonnes of CO₂ per tonne of fuel

Biocoal – Key Considerations

Use: Thermal (brown) coal replacement, or metallurgical coal replacement? If metallurgical, replacing:

- Coke?
- PCI?
- Charge carbon?
- Injection carbon?

Energy Density: Anthracite is 29 MJ/kg (12,000 BTU/lb)

Ash Content: Anthracite is < 5% - limits feedstock choices to generally clean wood

Logistics: As produced, very low density

CARBON INTENSITY FOR RNG FROM HTP

	Base Case		
CI, RNG Only (gCO _{2,eq} /MJ)	3.9	3.9	3.9
% Biocoal	80%	100%	80%
% Biochar	20%	0%	20% ¹
CI, Biocarbons (gCO _{2,eq} /MJ)	-62.8	-77.3	-61.8
Total CI (gCO _{2,eq} /MJ)	-58.9	-73.4	-57.9

- Calculated using GHGenius, 3rd party reviewed
- Calculated on a "lifecycle basis" includes transportation and preparation (griding) of wood

ADDITIONAL PROJECT PIPELINE

Combined Project Pipeline:

- 3.25M GJ/yr of RNG or Green Hydrogen
 - Gas supply for 36,000 homes
- 65K tonnes/yr of Biocarbon/Biocoal
- 200,000 tonnes/yr of GHG emission removal
- Modular technology to maximize regional impacts

Thank You!

Andrew White, CEO andrew.white@CHARtechnologies.com

CHAR technologies